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Filter Design Process 

•  Step-1 : Define filter specs  
      Pass-band, stop-band, optimization criterion,… 

•  Step-2 : Derive optimal transfer function 
      FIR or IIR filter design                                                         

•  Step-3 : Filter realization (block scheme/flow graph) 
      Direct form realizations, lattice realizations,…  
•  Step-4 : Filter implementation (software/hardware) 

      Finite word-length issues, … 

      Question: implemented filter = designed filter ? 
          ‘You can’t always get what you want’ -Jagger/Richards (?) 

Chapter-3 

Chapter-4 

Chapter-5 
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Filter Design Process 

•  Step-1: Filter Specification  
         Example: Low-pass filter 
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Chapter-3 : Filter Design  

•  FIR filters 
–  Linear-phase FIR filters 
–  FIR design by optimization 
     Weighted least-squares design, Minimax design 

–  FIR design in practice 
     `Windows’, Equiripple design, … 
     Software (Matlab,…) 

•  IIR filters 
–  Poles and zeros 
–  IIR design by optimization 
     Weighted least-squares design, Minimax design 

–  IIR design in practice 
    Software (Matlab,…) 
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FIR Filters 

FIR filter = finite impulse response filter 
  
 
•  L poles at the origin z=0 (hence guaranteed stability)  
•  L zeros (zeros of B(z)), `all zero’ filters 
•  Corresponds to difference equation  

•  Hence also known as `moving average filters’ (MA) 
•  Impulse response 

H (z) = B(z)
zL

= b0 + b1z
−1 +...+ bLz

−L

y[k]= b0.u[k]+ b1.u[k −1]+...+ bL.u[k − L]

h[0]= b0,h[1]= b1,...,h[L]= bL,h[L +1]= 0,...
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Linear Phase FIR Filters 
 
•  Non-causal zero-phase filters : 
    Example: symmetric impulse response (length 2.Lo+1)  
            h[-Lo],….h[-1], h[0] ,h[1],...,h[Lo] 
            h[k]=h[-k], k=1..Lo 

     
 
    Frequency response is 
 
      
 
     i.e. real-valued (=zero-phase) transfer function 
 

k 
Lo 

H (e jω ) = h[k].e− jω.k

k=−Lo

+Lo

∑ = ... = dk.cos(ω.k)
k=0

Lo

∑           dk = 2.h[k]

xee jxjx cos.2=+ −+

2Lo+1 terms Lo+1 terms 

except d0 = h[0]
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Linear Phase FIR Filters 

•  Causal linear-phase filters = non-causal zero-phase + delay 
    Example: symmetric impulse response & L even  
         h[0],h[1],….,h[L] 
         L=2.Lo  
         h[k]=h[L-k], k=0..L 
 
   Frequency response is 
 
      
          = i.e. causal implementation of zero-phase filter, by    
             introducing delay                        

H (e jω ) = h[k].e− jω.k

k=0

L

∑ = ... = e− jω.Lo. dk.cos(ω.k)       dk
k=0

Lo

∑ = 2.h[k + Lo]

k 
L 

z−Lo
z=e jω

= e− jω.Lo

0 

except d0 = h[Lo]

ç phase is linear function  
of frequency 
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Linear Phase FIR Filters 

Type-1              Type-2               Type-3              Type-4 
L=2Lo=even      L=2Lo+1=odd    L=2Lo=even     L=2Lo+1=odd 
symmetric         symmetric             anti-symmetric      anti-symmetric 
h[k]=h[L-k]        h[k]=h[L-k]         h[k]=-h[L-k]        h[k]=-h[L-k]  
      
     
                          zero at               zero at               zero at 
LP/HP/BP         LP/BP                BP                      HP/BP 
 
PS: `Modulating’ Type-2 with 1,-1,1,-1,.. gives Type-4 (LP->HP) 
PS: `Modulating’ Type-4 with 1,-1,1,-1,.. gives Type-2 (HP->LP) 
PS: `Modulating’ Type-1 with 1,-1,1,-1,.. gives Type-1 (LP<->HP) 
PS: `Modulating’ Type-3 with 1,-1,1,-1,.. gives Type-3 (BP<->BP) 

PS: IIR filters can NEVER have linear-phase property ! (proof see literature)  

j.e− jωL/2 sin(ω
2
). dk.cos(ω.k)
k=0

Lo

∑e− jωL/2. dk.cos(ω.k)
k=0

Lo

∑ e− jωL/2 cos(ω
2
). dk.cos(ω.k)
k=0

Lo

∑ je− jωL/2 sin(ω). dk.cos(ω.k)
k=0

Lo−1

∑

πω = πω ,0= 0=ω
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FIR Filter Design by Optimization 

(I)   Weighted Least Squares Design : 
•  Select one of the basic forms that yield linear phase 
    e.g. Type-1  

•  Specify desired frequency response (LP,HP,BP,…)  
   
•  Optimization criterion is 
  

   where               is a weighting function  

H (e jω ) = e− jωL/2. dk.cos(ω.k)
k=0

Lo

∑ = e− jωL/2.A(ω)

Hd (ω) = e
− jωL/2.Ad (ω)

mind0 ,...,dLo W (ω
−π

+π

∫ ) H (e jω )−Hd (ω)
2
dω =mind0 ,...,dLo W (ω

−π

+π

∫ ) A(ω)− Ad (ω)
2 dω

F (d0 ,...,dLo )
  

0)( ≥ωW
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FIR Filter Design by Optimization 

•  This is solved by replacing function F(..) by… 

      

   where the wi’s are a (sufficiently large) set of sample frequencies 
   This leads to an equivalent `discretized‘ quadratic optimization function 
 
    
 
 
 
 
 
 
   Optimal solution is 
     

F(d0,...,dLo ) = W (ωi ) c
T (ωi ).

d0
:
dLo

!

"

#
#
#
#

$

%

&
&
&
&

− Ad (ωi )

(

)
**

+
*
*

,

-
**

.
*
*

2

= xT .Q.x − 2xT .p+µ
i
∑

Q = W (ωi ).c(ωi ).c
T (ωi )

i
∑         p = W (ωi ).Ad (ωi ).c(ωi )

i
∑         µ =   ...

F(d0,...,dLo ) = W (ωi ). A(ωi )− Ad (ωi )
2

i
∑

pQxOPT .1−=
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FIR Filter Design by Optimization 

•  Can be supplemented with additional constraints, e.g. for 
pass-band and stop-band ripple control :  

                  
 

•  The resulting optimization problem is : 
        minimize :                                          (=quadratic function) 

 
         
       subject to                    (=pass-band constraints) 

                                           (=stop-band constraints)                

       =  `Quadratic Programming’ problem  

F(d0,...,dLo ) = ...

xT = d0 d1 ... dLo!
"

#
$

SS

PP

bxA
bxA

≤

≤

.

.

ripple)  band-stop is (    ,..., freqs. band-stopfor      ,)(     

ripple)  band-pass is (    ,..., freqs. band-passfor     ,1)(

S2,1,S,

P2,1,P,

δωωδω

δωωδω

SSiS

PPiP

A

A

≤

≤−
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FIR Filter Design by Optimization 

(II)  `Minimax’ Design : 
•  Select one of the basic forms that yield linear phase 
    e.g. Type-1  

•  Specify desired frequency response (LP,HP,BP,…)  
   
•  Optimization criterion is  
 
    where               is a weighting function 
•  Leads to  `Semi-Definite Programming’ (SDP) problem, for which efficient 

interior-point algorithms & software are available.  

H (e jω ) = e− jωL/2. dk.cos(ω.k)
k=0

Lo

∑ = e− jωN /2.A(ω)

Hd (ω) = e
− jωL/2.Ad (ω)

mind0 ,...,dLomax−π≤ω≤πW (ω). H (e
jω )−Hd (ω) =mind0 ,...,dLomax−π≤ω≤πW (ω). A(ω)− Ad (ω)

0)( ≥ωW
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FIR Filter Design by Optimization 

•  Conclusion: 
    (I) Weighted least squares design 
    (II) Minimax design 
    provide general `framework’, procedures to translate filter 

design problems into standard optimization problems  

•  In practice (and in textbooks): 
    Emphasis on specific (ad-hoc) procedures :  
    - Filter design based on `windows’ 
    - Equiripple design 
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FIR Filter Design using `Windows’ 

Example : Low-pass filter design 
•  Ideal low-pass filter is 

•  Hence ideal time-domain impulse response is (non-causal zero-phase) 

•  Truncate hd[k] to L+1 samples (L even): 

•  Add delay to turn into causal filter 

⎩
⎨
⎧

<

<
=

πωω
ωω

ω
    0

         1
)(

≺C
C

dH

hd[k]= 1
2π

Hd (e jω ).
−π

+π

∫ e jωkdω = ... =α. sin(ωck)
ωck

      −∞ < k <∞

h[k]= hd[k]     − L / 2 < k < L / 2
0                  otherwise

"
#
$

%$

π
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FIR Filter Design using `Windows’ 

Example : Low-pass filter design (continued) 
•  PS : It can be shown (use Parceval’s theorem) that the filter obtained by 

such time-domain truncation is also obtained by using a weighted least-
squares design procedure with the given Hd, and weighting function            

•  Truncation corresponds to applying a `rectangular window’ : 

•  Can also apply other window fuctions, e.g.,  Han-, Hamming-, 
Blackman-, Kaiser window,…. (see textbooks). Window choice/design is 
trade-off between side-lobe levels (define peak pass-/stop-band ripple) 
and width main-lobe (defines transition bandwidth), see examples 

][].[][ kwkhkh d=

w[k]= 1        − L / 2 < k < L / 2
0                  otherwise

"
#
$

1)( =ωW
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FIR Equiripple Design 

•  Starting point is minimax criterion, e.g. 

•  Based on theory of Chebyshev approximation and the `alternation 
theorem’, which (roughly) states that the optimal d’s are such that the 
`max’ (maximum weighted approximation error) is obtained at Lo+2 
extremal frequencies… 

     …that hence will exhibit the same maximum ripple  (`equiripple’) 
•  Iterative procedure for computing extremal frequencies, etc. (Remez 

exchange algorithm, Parks-McClellan algorithm)  
•  Very flexible, etc., available in many software packages 
•  Details omitted here (see textbooks) 

mind0 ,...,dLomax0≤ω≤πW (ω). A(ω)− Ad (ω) =mind0 ,...,dLomax0≤ω≤π E(ω)

max0≤ω≤π E(ω) = E(ωi )     for i =1,..,Lo+ 2



9 

DSP 2016  /  Chapter-3: Filter Design  17 / 32 

FIR Filter Design Software 

•  FIR Filter design abundantly available in 
commercial software 

•  Matlab: 
  b=fir1(L,Wn,type,window), windowed linear-phase FIR design, L is filter 

order, Wn defines band-edges, type is `high’,`stop’,… 
   b=fir2(L,f,m,window),  windowed FIR design based on inverse Fourier 

transform with frequency points f and corresponding magnitude 
response m 

   b=remez(L,f,m), equiripple linear-phase FIR design with Parks-
McClellan (Remez exchange) algorithm 
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FIR Filter Design – Matlab Examples 

1/8 •  for filter_order=10:30:100 
•      % Impulse response 
•      b = fir1(filter_order,[W1 W2],'bandpass'); 
•      % Frequency response 
•      % Plotting  
•  end 

fil
te

r_
or

de
r-

10
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FIR Filter Design – Matlab Examples 

2/8 •  for filter_order=10:30:100 
•      % Impulse response 
•      b = fir1(filter_order,[W1 W2],'bandpass'); 
•      % Frequency response 
•      % Plotting  
•  end 

fil
te

r_
or

de
r-

40
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FIR Filter Design – Matlab Examples 

3/8 •  for filter_order=10:30:100 
•      % Impulse response 
•      b = fir1(filter_order,[W1 W2],'bandpass'); 
•      % Frequency response 
•      % Plotting  
•  end 

fil
te

r_
or

de
r-

70
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FIR Filter Design – Matlab Examples 

4/8 •  for filter_order=10:30:100 
•      % Impulse response 
•      b = fir1(filter_order,[W1 W2],'bandpass'); 
•      % Frequency response 
•      % Plotting  
•  end 

fil
te

r_
or

de
r-

10
0 

 
•  % See help fir1 
•  % Bandpass filter 
•  % B = FIR1(N,Wn,'bandpass') 
•  % Wn = [W1 W2] upper and lower cut-

off freq 
•  W1 = 0.25; % 1/4*pi 
•  W2 = 0.75; % 3/4*pi 
•  for filter_order=10:30:100 
•      % Impulse response 
•      b = fir1(filter_order,[W1 

W2],'bandpass'); 
•      % Frequency response 
•      [H W]=freqz(b); 
•      % Plotting  
•      subplot(211) 
•      plot(W,db(abs(H)));hold on 
•      set(gca,'XTick',0:pi/2:pi) 
•      set(gca,'XTickLabel',{'0','pi/2','pi'}) 
•      title('FIR filter design'); 
•      xlabel('Circular frequency (Radians)'); 
•      ylabel('Magnitude response (dB)'); 
•      axis([0 pi -100 20]) 
•      subplot(212) 
•      plot(b) 
•      xlabel('Samples'); 
•      ylabel('Impulse response'); 
•      axis([0 100 -0.5 0.5]) 
•      pause 
•  end 
•  hold off 
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FIR Filter Design – Matlab Examples 

5/8 
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FIR Filter Design – Matlab Examples 

6/8 
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FIR Filter Design – Matlab Examples 

7/8 
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FIR Filter Design – Matlab Examples 

  
•  % See help fir1 
•  % Bandpass filter 
•  % B = FIR1(N,Wn,'bandpass',win) 
•  % Wn = [W1 W2] upper and lower cut-off frequencies 
•  % win windown type 
•  W1            = 0.25; % 1/4*pi 
•  W2            = 0.75; % 3/4*pi 
•  filter_order  = 50; 
•  win1          = triang(filter_order+1); 
•  win2          = rectwin(filter_order+1); 
•  win3          = hamming(filter_order+1); 
•  win4          = blackman(filter_order+1); 
•    
•  b1 = fir1(filter_order,[W1 W2],'bandpass',win1); 
•  b2 = fir1(filter_order,[W1 W2],'bandpass',win2); 
•  b3 = fir1(filter_order,[W1 W2],'bandpass',win3); 
•  b4 = fir1(filter_order,[W1 W2],'bandpass',win4); 
•    
•  [H1 W] = freqz(b1); 
•  [H2 W] = freqz(b2); 
•  [H3 W] = freqz(b3); 
•  [H4 W] = freqz(b4); 
•    
•  subplot(211) 
•  plot(W,db(abs(H1)));hold 

on;plot(W,db(abs(H2)));plot(W,db(abs(H3)));plot(W,db(abs(H4)));hold off 
•  set(gca,'XTick',0:pi/2:pi) 
•  set(gca,'XTickLabel',{'0','pi/2','pi'}) 
•  title('Blackman window'); 
•  xlabel('Circular frequency (Radians)'); 
•  ylabel('Magnitude response (dB)'); 
•  axis([0 pi -100 20]) 
•  subplot(212) 
•  plot(b4);hold on;plot(win4,'r');;hold off 
•  xlabel('Samples'); 
•  ylabel('Impulse response'); 
•  axis([0 filter_order+1 -0.5 1.5]) 

8/8 
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IIR filters 

Rational  transfer function : 
•    
      
    L poles (zeros of A(z)) , L zeros (zeros of B(z)) 

•  Infinitely long impulse response 
•  Stable iff poles lie inside the unit circle 
•  Corresponds to difference equation 

    = also known as  `ARMA’ (autoregressive-moving average) 
 

H (z) = B(z)
A(z)

=
b0z

L + b1z
L−1 +...+ bL

zL + a1z
L−1 +...+ aL

=
b0 + b1z

−1 +...+ bLz
−L

1+ a1z
−1 +...+ aLz

−L

y[k]+ a1.y[k −1]+...+ aL.y[k − L]= b0.u[k]+ b1.u[k −1]+...+ bL.u[k − L]

y[k]= b0.u[k]+ b1.u[k −1]+...+ bL.u[k − L]
`MA '

   −a1.y[k −1]−...− aL.y[k − L]
`AR '

  
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    + 
•  Low-order filters can produce sharp frequency response 

•  Low computational cost (cfr. difference equation p.29)   
 
    - 
•  Design more difficult 
•  Stability should be checked/guaranteed 
•  Phase response not easily controlled  
    (e.g. no linear-phase IIR filters) 
•  Coefficient sensitivity, quantization noise, etc. can be a 

problem (see Chapter-6)  

IIR Filter Design 
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IIR filters 

Frequency response versus pole-zero location :  
    ( ~ Frequency response  is z-transform  
          evaluated on the unit circle) 
    Example 
    Low-pass filter with 
    poles at 
    zeros at  
 
 
 
 
 

0.80± 0.20 j
j66.075.0 ±

Zero near (or on) unit-circle introduces `dip’ (or transmision zero) in freq. response 

hence stop-band can be emphasized by zero placement 

zero 

pole pole 

DC (z=1) 

Nyquist freq (z=-1) 

Pole near unit-circle introduces `peak’ in frequency response 

hence pass-band can be set by pole placement 
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IIR Filter Design by Optimization 

(I)  Weighted Least Squares Design : 
•  IIR filter transfer function is 

•  Specify desired frequency response (LP,HP,BP,…) 

•  Optimization criterion is  

 
    where                 is a weighting function 
•  Stability constraint  : 

minb0 ,...,bL ,a1,...,aL W (ω
−π

+π

∫ ) H (e jω )−Hd (ω)
2
dω

F (b0 ,...,bL ,a1,...,aL )
  

0)( ≥ωW

1,0)( ≥≠ zzA

)(ωdH

H (z) = B(z)
A(z)

=
b0 + b1z

−1 +...+ bLz
−L

1+ a1z
−1 +...+ aLz

−L
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IIR Filter Design by Optimization 

(II)  `Minimax’ Design : 
•  IIR filter transfer function is 

•  Specify desired frequency response (LP,HP,BP,…) 

•  Optimization criterion is  

    where                 is a weighting function 
•  Stability constraint  : 
    

)(ωdH

0)( ≥ωW

H (z) = B(z)
A(z)

=
b0 + b1z

−1 +...+ bLz
−L

1+ a1z
−1 +...+ aLz

−L

1,0)( ≥≠ zzA

minb0 ,...,bL ,a1,...,aL max0≤ω≤πW (ω). H (e
jω )−Hd (ω)
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IIR Filter Design by Optimization 

These optimization problems are significantly more  
difficult than those for the FIR design case… : 
 
•  Problem-1: Presence of denominator polynomial leads to 

non-linear/non-quadratic optimization 

•  Problem-2: Stability constraint  
     (zeros of a high-order polynomial are related to the polynomial’s   
      coefficients in a highly non-linear manner) 

–  Solutions based on alternative stability constraints, that 
e.g. are affine functions of the filter coefficients, etc… 

–  Topic of ongoing research, details omitted here 
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IIR Filter Design Software 

•  IIR filter design considerably more complicated 
than FIR design (stability, phase response, etc..)   

•  (Fortunately) IIR Filter design abundantly available 
in commercial software 

•  Matlab: 
  [b,a]=butter/cheby1/cheby2/ellip(L,…,Wn),  
      IIR  LP/HP/BP/BS design based on analog prototypes, pre-warping,    
      bilinear transform, …  
      immediately gives H(z)    J 
  analog prototypes, transforms, … can also be called individually 
  filter order estimation tool 

  etc...  


